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We have derived an exact expression for the determinant of the toppling matrix of the Abelian sand-
pile model in any finite dimension with open boundary conditions. The result can also apply to the
semiopen boundary cases in certain limiting cases. An analytic result can also be obtained in the ther-
modynamic limit where the grid size tends to infinite: namely, the total number of system configurations
in the self-organized critical state follows a power law as the grid size increases. Therefore, under a uni-
form but random particle addition, 1/f? instead of 1/f scaling is observed. The relation with the site

percolation problem is also discussed.

PACS number(s): 05.40.+j, 64.60.Fr

I. INTRODUCTION

The concept of self-organized criticality, which was re-
cently introduced by Bak, Tang, and Wiesenfeld [1], has
been used to study quite a number of physical phenome-
na, including the sandpile [1,2] and earthquakes [3]. In
particular, it was claimed first by Bak et al. that under a
random and uniform particle addition to the pile (with di-
mension larger than 1) a 1/f power spectrum in
avalanche size would result. However, it was later ar-
gued by various authors, using both statistical and nu-
merical methods, that in the thermodynamic limit, the
pile should result in a 1/f2 power spectrum instead [4],
whenever the dimension of the pile was less than 6. In
this paper, we are going to first show that the total num-
ber of self-organized critical states (which is equal to detA
[5]) scales as a power law, as the total number of grids in
the system increases for any finite number of dimensions.
Thus, under a uniform and random particle addition to
the system, a 1/f? power spectrum is a natural conse-
quence. In Sec. II, we shall first review some facts about
symmetric and Toeplitz matrices. Then we shall apply
the result to calculate the total number of self-organized
critical states in various system configurations with
different boundary conditions and different dimensions.
We shall also argue the form of the power spectrum of
avalanche size. Relation to percolation is also discussed.
Finally, a brief summary is presented in Sec. III.

II. CALCULATION OF DET A

The N-dimensional Abelian sandpile model (ASM)
with nearest-neighbor toppling is defined as follows: con-
struct an N-dimensional simple-cubic lattice and use all
its lattice points as our grid. Assign an integer called the
local height to each of the grid points. Whenever a local
height is greater than a certain prescribed value, the cor-
responding grid point is said to be unstable. It will then
rearrange itself by distributing 2NV of its local height
equally to its nearest neighbor, which is termed toppling.
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This process is repeated until all the grid points of the
system become stable again and the entire process is
called an avalanche. So we may think of the local height
as the amount of particles a grid point holds. If we label
the grid points by i, then a (toppling) matrix A can be
formed in the following way: Aj; is the number of parti-
cles we have to remove from i and possibly have to trans-
port to other grid points whenever i becomes unstable,
while A;; is minus the amount of particles received by j
whenever i topples for j7i. Thus the toppling matrix is
well defined once the boundary conditions of the system
are specified. In particular, we shall consider the follow-
ing two important types of boundary conditions: a
boundary hypersurface of the system is said to be open,
provided that every particle that is moved out of the sys-
tem from this hypersurface during an avalanche cannot
enter the system once again; on the other hand, it is said
to be closed if no particle can move out of this boundary
in any avalanche. Thus a system is said to be having an
open boundary, provided that all its 2V hypersurfaces are
open, and it is said to have a semiopen boundary as long
as N of them (which intersect at a point) are open and N
of them are closed [6]. As pointed out by Dhar, if we
repreatedly add a unit amount of particles randomly and
uniformly over the grid points at a slow enough rate, the
system will eventually evolve to a steady state called the
self-organized critical state, whose total number of
configurations in these kinds of states is given by the
determinant of its toppling matrix A [5], and now we are
going to discuss some facts on symmetric and Toeplitz
matrices first. After that we are going to apply the result
to calculate the determinant and the inverse of the top-
pling matrices for various Abelian sandpile models with
nearest-neighbor toppling.

A. Facts on symmetric and Toeplitz matrices

Fact 1. Every symmetric matrix is diagonalizable [7].
In particular, if we consider the » X n tridiagonal matrix
T} with T} =a (=2) for all i/, T} =—1 whenever
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|i —j|=1; that is,

Fact 2. The eigenvalues of the n Xn matrix T} are
a—2cos(kw/n +1) with k=1,2,...,n [8]. Moreover,
the corresponding normalized eigenvectors y; are
V2/(n + Dsin[ikw/(n +1)].

Proof. Suppose f,(A) is the characteristic polynomial
of Tj, then it satisfies the recurrence relation
fa=(a—A)f,_1—f,—, From the initial conditions, it is
clear that f,(A)=sin(n +1)x /sinx where A=a —2 cosx.
Therefore the eigenvalues are obvious. The correspond-
ing eigenvectors can be verified directly.

Actually, if we define D, as the determinant of T, then
D, forms a Sturm sequence which can be used to esti-
mate the distribution of eigenvalues of T [7,9]. More-
over, the location of the eigenvalues of a matrix is also
bounded by a finite union of discs in C, the set of all com-
plex numbers [7,9,10]. Furthermore, the determinant of
T given by

n+1 ifa=2 @)
detTy= {p5 "' —pi ™! .
———————— otherwise,
Mo Hg

where p; are the characteristic roots of u>—au—1=0.
So by combining Fact 2 and Eq. (2), we have

n—1

IT

k=1

kar
a—2cos—
n

_ T

. (3)
My My

In addition, if we consider another matrix S, which

equals T] except that the first diagonal element
1, =b(<a) instead of a, that is,
b —1
-1 a —1
Si= ] , @)
-1 a -—1
-1 a
then we have
b ifa=2 n=1
- nb—1)+1 ifa=2, n>1 (5)
detS7= n n— _
by —ph— (w3 T —pf ! .
otherwise .
Myl

Besides, by means of the Sturm sequence, as just dis-
cussed before together with the Gerschgorin theorem
[10], it is easy to see that the total number of eigenvalues
of S} in the open intervals (a —2,a) and (a,a +2) are the
same. In fact, we can say more about the distribution of
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eigenvalues of S, the proof of which can be found in Ap-

pendix A.
Theorem 1. As n— o, the eigenvalues of S{ in the in-
terval (a —2,a +2) shall follow the distribution

D (x)=1mcos[m(x —a)/4]/8.

Actually, the eigenvalues of S, are also known in some
special but important cases including the following.

Fact 3. The eigenvalues of St are
a —2cos[(2k +1)m/(2n +1)] with k=0,1,...,n—1
whenever b =a — 1.

Proof. Similar to Fact 2 and Eq. (Al),
Sn(M)=[sin(n +1)x —sinnx ]/sinx and so the eigenval-
ues can be computed easily.

Now we can define the first generation Toeplitz (T7)
and tridiagonal symmetric matrices (S7) as the Toeplitz
and tridiagonal symmetric matrices, as defined above re-
spectively. Also the mth generation Toeplitz matrix T,
is made up of an n X n block matrix of the form

A -1
-1 A -1

I A —I
-1 A

where A is an (m —1)th generation Toeplitz matrix and
I is the identity matrix. Similarly, the mth generation tri-
diagonal symmetric matrix S}, is made up of a block ma-
trix that is similar to the one above except that the first
element in the diagonal of the block matrix need not be
the same as the rest of them. Then we have the following
observation.

Theorem 2. The eigenvalues of T}, and S}, are real and
may possibly be degenerate.

Proof. Let us consider only the mth generation Toe-
plitz matrix; otherwise the proof is similar. We prove
this by induction on m. When m =1, the result is just
given by Fact 2. Consider an mth generation Toeplitz
matrix T) that is generated by an (m —1)th generation
matrix A. By an induction assumption, A is diagonaliz-
able, so that we can find a unitary matrix U such that
UAU ! is diagonalized. We can construct a block diago-
nal unitary matrix V with all its diagonal elements equal
U. Then VTZV~! is block tridiagonalized and all its
off-diagonal elements are zero, except at each of the two
off-diagonal lines. By relabeling the columns and rows,
the matrix can be converted into a block diagonal matrix
where each of the blocks (possibly identical) is a tridiago-
nal matrix in the form of T{. Therefore, it is proved.

Note that the above proof also tells us how to find the
eigenvalues of an mth generation Toeplitz matrix. In ad-
dition, it is clear that the eigenvalues for a higher genera-
tion matrix T}, or S, are highly degenerate.

A similar idea has already been used recently by
Markosova and Markos in the calculation of attractor
periods of deterministic sandpiles with open boundary
conditions by means of tensors and field-theoretic
methods and notations. The relation with the lattice
Green’s function is also mentioned [11].
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B. One-dimensional models

With the aid of the above observations, we are now go-
ing to calculate the value of detA for one-dimensional
systems. From the discussion in Sec. I, the toppling ma-
trix of the one-dimensional model with open boundary
conditions (that is, where particles can freely go away
from the system through the two ends at the time of top-
pling) is just a tridiagonal Toeplitz matrix with diagonal
elements equal to 2 and off-diagonal elements equal to
—1 [1,5]. So from Eq. (2), detA is just n +1 where n is
the number of grid points of the system. In other words,
the total number of self-organized critical configurations
of the system grow linearly with the number of grid
points in the system. So under a uniform and random
particle addition, the 1/f? power spectrum in the
avalanche size is observed [4,6].

In a similar way, for a one-dimensional semiopen
boundary system, where particles can only go out of the
system from one end at the time of toppling, the toppling
matrix is in the form of S{ with @ =2 and b =1. So from
Eq. (5), there is one and only one self-organized critical
configuration for the system which is independent of the
number of grid points n. In other words, no matter
where you drop the sand, it will simply slide through the
system and dissipate in the open side of the system
boundary. Thus the situation is exactly the same as the
one-dimensional model studied by Bak, Tang, and
Wiesenfeld [1]. So under a uniform and random particle
addition, 1/f? scaling in its power spectrum is observed
[1,4,6].

Actually in both models the two-point correlation
function G;=A; !, which is the probability of toppling
occuring at site j given that a particle is added at site i,
will never die out as the distance between i and j in the
system increases [5]. It is this kind of strong correlation
in the self-organized critical states of the system that
leads to the 1/f 2 power law of avalanche size. However,
if the system is allowed to remove more than two parti-
cles each time it topples (and hence the particle number is
not conserved during an avalanche), from Eq. (2) or Eq.
(5) the total number of self-organized critical states will
grow exponentially with the number of grid points. This
implies an exponential decay in the two-point correlation
function, and hence a 1/(f +a)* power spectrum is ob-
served for some a >0 [12]. In other words, the scaling in
the power spectrum is a direct consequence of the ex-
istence of a particle conservation law in the model. Fur-
ther discussions on the conservation law can be found
elsewhere [13].

C. Two-dimensional models

After looking at the trivial one-dimensional models, we
quickly turn to their more interesting two-dimensional
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counterparts. From the above discussions, we know that
all the diagonal elements of A for a two-dimensional
model with open boundary conditions (where particles
can go out in all the four boundary surfaces) are 4. Also,
A;=—1if and only if / and j are neighboring grid points.
Therefore A is a second-generation Toeplitz matrix.
Thus if the grid size is n Xm, then from Theorem 2 and

Fact 2 the eigenvalues of A are 4—2cos[jn/
(n+1)]—2cos[km/(m +1)] with j=12,...,
nand k =1,2,...,m. From Eq. (3), detA is given by
n m s
_ jm ki
detA= 4—2 -2
€ JE[I kI:II cos— cos——
= . j ki
=4mn 2 JT +si 2
o I sin D S S+ 1)
n m'+1_ m_+l
— H #2_/ ‘u“l_/ , (7)
j=1 H2j My

where u,; and u,; are roots of the characteristic equation
A2—{4—2cos[jm/(n +1)]}A+1=0 for every j. A simi-
lar equation can also be obtained for nonconservative sys-
tems.

In the thermodynamic
detA—¢&™", where { is given by

limit where m,n— oo,

fﬂ/zf”/zln[sinzx +sin?yldx dy , (8)
0 0

which implies that {~3.212. That is, an average of § dis-
tinct states can be found in each of the local grid points
once the system has evolved to its self-organized critical
configuration. Although the phase-space volume of the
system in the self-organized critical state is rather large,
it does not necessarily imply an exponential decay in the
two-point correlation function G;;. Because one of the ei-
genvalues of the system is 4—2cos[m/
(n+1)]—2cos[w/(m +1)], it will tend to O as
m,n — oo; thus some of the elements in G(=A"!) may
be quite large. So we have to calculate G;; explicitly, at
least in some special cases. In fact, we shall prove in Ap-
pendix B that G,;,,, the probability of having an
avalanche in grid (k,/) given a particle is added to the site
(i,7), is given by

_ ]
sin iam sin kam sin jbm sin lbm
G _ 2 é n—+1 n+1 n—+1 n+1 ©)
Pk nt2 ] ah= 4—2cos—2T— 2 cos b
n+1 n+1
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whenever m =n. So in the thermodynamic limit, some of
the G, ;,, , may become rather large due to the fact that
the denominator approaches zero. By means of product
and sum formulas in trigonometry, it is not difficult to see
that G, ;,, ; satisfies the following sum rule:
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where we define G| ., ;= — G .4, whenever k <0 and
similarly for [ By means of the fact that
Gijik 1 =Gns1—in+1—jin+1-kn+1—1 and Eq. (10), we

can calculate the entire two-point correlation function by
knowing all the values of G| |.; ;. Equation (10) rules out
the possibility that the two-point correlation function

koo scales like a power law as the separation between two
Gi,j;k,[: > > Gy ik +2p—1,j—1+2g—1 sites increases. The reason is that if G, j.k,1 scales like
p=1g=1 1/s%, where s is the distance between (i, ;) and (k, /), then
Eq. (10) implies that G, ;,; ;, will also scale as 1/5%" ! for
for all i,j,k,1 , (10) sufficiently large s, which is impossible. Besides, we have
J
) |25 '1+cos_(2a SR SLA ) PR LR 1L

n n+1 n—+1

S G > ~ S |2tL (11)
Lo, bkl T 0520 4oneesRatlm Qb+ lw T T |’
n—+1 n+1

which diverges like In # in the thermodynamic limit. We
use [x] to denote the integral part of x. Therefore, the
two-point correlation function cannot die out exponen-
tially. Also Gy 1,4, =Gy ;6421 =Go 1.k +2,1>0, which
implies that G is an overall straightly decreasing function
of k and /. From Eq. (9), we know that as m =n — o0, G
is still analytic. So we may expand G ;. , in terms of a
Laurent series with variables £ and /. The above argu-
ment forces this Laurent series to be analytic. The diver-
gence of Eq. (11) therefore implies that G is algebraic in
the sense that G, ;,;; can only decay algebraically as the
separation between (i,j) and (k,!) increases. In other
words, the power spectrum in avalanche size will eventu-
ally scale as 1/f? instead of 1/f, as that which was pro-
posed previously [1,4,14]. Although the above discussion
is based on the assumption that m =n, we expect the
same result to also hold in the general case where m and
n— o separately. The physical reason is simple: the
behavior of this kind of system in the thermodynamic
limit must be well defined and unique.

Physically, the appearance of a long-range correlation
at the expense of an infinite number of self-organized crit-
ical states is not self-contradictory. When the system has
evolved to one of its self-organized critical configurations,
none of its local grid points can afford an addition of four
particles at the same time without being unstable. Also
those grid points located just adjacent to an avalanche
cluster are used to absorb all the particles coming out
from this avalanche cluster. For a sufficiently small
avalanche, the average number of particles coming out of
the avalanche cluster is not very large, and hence the
probability of preventing it from further growth is quite
high. But for very large avalanches, the total number of
particles that these boundary sites have to receive can
easily exceed four. Thus, the only possibility is that the
avalanche will continue to grow until it reaches the sys-
tem boundary and will dissipate there.

In the event that the system is dissipative, the diagonal
element of A is greater than 4. Therefore as m and

f

n— o, none of the eigenvalues of A will tend to zero.
We expect an exponential type of decrease in the correla-
tion length. This point can be further strengthened by
the fact that 37 ,-,G; ., <1/(x —4) is finite, where
x (>4) is the number of particles toppled each time. At
the other extreme, if the system is creative, that is, new
particles are introduced every time a site topples, then
some of the eigenvalues of A become negative and even
zero. So in the thermodynamic limit, the two-point
correlation function becomes an ill-defined concept. In
this respect, the existence of a particle conservation law is
of great importance to the exhibition of self-organized
criticality for this kind of sandpile model. Further dis-
cussions on the importance of conservation laws can be
found elsewhere [13,14].

Now let us look into the problem from the viewpoint of
(site) percolation [16]: suppose we have an ASM model
on an m X n square lattice such that in the thermodynam-
ic limit the total number of self-organized critical states
scales as 1/p™" with p < 1. Then for each single particle
added to an arbitrary site, the average probability of that
site becoming unstable and hence inducing possibly a
series of topplings is p. So let us compare this with the
problem of site percolation; namely, every grid point of
the square lattice has precisely a probability p of being
occupied. We can obtain, at least in principle, the distri-
bution function for the percolating animals (that is, the
distribution of the size of connected occupied sites) for
this problem. We may generate such a distribution in the
following way: randomly choose a site on the lattice and
ask if that site is occupied. If not, then there is no per-
colating animal associated with that site. If the answer is
positive, then we look around for its four neighboring
sites and ask the same question again of them. By repeat-
ing this procedure, we know the size of the percolating
animal in question. After sufficiently large statistics, we
get the idea of how such a percolating size is distributed.
Note that the probability p of a site being occupied is in-
dependent of all the other sites.
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However, if we compare this with how we determine
the avalanche size, the situation is different. The proba-
bility of a given site being stable or not depends on the to-
tal number of particles added or toppled to the site. So
when we add a particle to a site, the probability of that
site being unstable is p. But whenever there is a large
avalanche, due to the two-dimensional nature of the sys-
tem, which allows an interconnected flow of particles via
toppling using different paths to the same point at the
same time, the average number of particles received by
some of the sites can be far greater than 1. So the proba-
bility of some of the sites (possibly near the point where
we add a particle to trigger the avalanche) being toppled
is far greater than p. So if we can increase the value of p
from O up in both the percolating and self-organized criti-
cal systems at the same time, the distribution avalanche
size for the self-organized critical system will go critical
before that of the percolating animal for the correspond-
ing percolation system. Therefore, if we use p =1/¢,
which is found in the two-dimensional ASM model, as
the probability of occupation of sites in the correspond-
ing percolation problem, that system must be supercriti-
cal in the sense that the probability of obtaining a per-
colating animal with sufficiently large size is exponential-
ly small. That is to say, the value of p =1/ sets a lower
bound for the percolation threshold (p,) in the corre-
sponding site percolation problem as long as the sandpile
model is critical or subcritical. It should be noted that
we have a further degree of freedom here for finding the
lower bound of the site percolation threshold: namely,
the sandpile model itself. For different sandpile models
with the same corresponding site percolation, the values
of p may be different. Therefore, we can vary the rules of
the sandpile model so as to locate a better lower bound
for the p.. Further discussions on percolation on
different lattices can be found elsewhere [15]. In this
two-dimensional case, we expect the 1/{=0.311 is a
lower bound for the two-dimensional site percolation
problem, which is consistent with the simulation results
[16].

Let us now go on to the problem of a two-dimensional
ASM with semiopen boundary conditions on an m Xn
grid. (That is, particles can only go out from two adja-
cent of the four boundary surfaces.) Similar to the argu-
ment early in this subsection, the toppling matrix A for
this model is a second-generation tridiagonal matrix. Al-
though the exact eigenvalues, eigenvectors, and hence the
matrix inverse of A is unknown, Theorem 1 ensures that
with the exception of possibly m +n —1 eigenvalues, the
distribution of the rest of them will asymptotically tend
to the corresponding two-dimensional model with open
boundary conditions. Moreover, it is straightforward to
see that detA will scale as £ ~V(# ~Ugm+n—1 with B<£.
So with the same grid, the number of self-organized criti-
cal states in the semiopen model must be less than that of
the corresponding open model. This is because the total
number of possible local states of a site next to the closest
boundary can never exceed 3 ( <{). However, as far as
the thermodynamic behavior of the system is concerned,
the difference between the open and semiopen boundary
conditions is not that important. In conclusion, all the
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above discussions on the open boundary models should
also work for the semiopen one.

D. Higher-dimensional methods

By direct deduction, we can generalize some of the
above results to higher-dimensional models. Without loss
of generality, we shall only discuss the open boundary
cases with an n Xn X - -+ Xn grid. For a k-dimensional
model, the corresponding toppling matrix will be a kth
generation Toeplitz matrix. Hence, the eigenvalue shall
be in the form 2k —3_,2cos[q;m/(n+1)], where
a;=1,2,...,n for each I. Moreover, in the thermo-
dynamic limit, the total number of self-orgar}(ized critical
configurations of the system scales as (§; )" , where &,
the average number of distinct possible self-organized
critical configurations per site, is given by
Sk 2 |  prn /2

f . f o In

k
- S sin’x;

i=1

In—=

4 dx]'..dxk.

(12)

So for a sufficiently large value of k,{; —2k. In other
words, the system approaches the trivial case where all
the 2k particles topple each time they are completely dis-
sipated. In this way, the lower bound of the p. corre-
sponding to the k-dimensional site percolation model
shall approach 1/2k for sufficiently large k. This obser-
vation is consistent with results from other arguments
[16]. Besides, following the same iterative procedure as
in Theorem 2 we can find the unitary matrix that diago-
nalizes A and hence the two-point correlation function.
Its explicit form is

Gil,...,ik;jl,...,jk
. haym Jiaym
, ) I;I S -
= , 13
n—+1 2, ok —2 a,m
S el

where the sum is over all g, from 1 to n with
1=1,2,...,k. In fact, a sum rule similar to Eq. (10) can
also be constructed. Again a natural consequence of the
sum rule is that the avalanche size cannot scale like 1/5%.
Let us consider also the sum

G g :
Z 1,...,1,:1,...,1k
g

I1 (1+cosx;)

fﬂ‘l

1 T
z?fo SR
2k =2 cosx,
I

dx,---dx, , (14)

which is finite and nonzero whenever k = 3, even if the in-
tegrand has a pole at x; = * -+ =x; =0. Thus, the corre-
lation between two distant grid points in the system may
either be algebraic or exponentiallike. Using arguments
similar to those in the previous subsection, we conclude
that the power spectrum of the avalanche size of the sys-
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tem is in the form 1/(f + f,)* for some f, >0 (in general,
fo is also a function of dimension k). In order to calcu-
late the value of f, let us consider the following sum
(here the role of s is to estimate the value of f; in fact,
the sum below is finite whenever f;>s and is infinite
whenever f, <s):

G - i €x
1,...,1,1|,.A.,1k p

&l

. .o L
) X ;’1 [1151nn_+_151nn_’_1
n+1 "1»2‘;1 ok —2 a
E,:COSn +1
~s(n—+1), (15)

which diverges for any s >0. As a result the two-point
correlation function cannot decay exponentially fast. So
fo should be 0. In other words, the power spectrum in
avalanche size in the higher-dimensional models also
scales as 1/f2%. Actually it is not totally unexpected for
the value of a to be 0. The physical reason is that except
for the system size and the unit size of each grid point,
there is no natural length scale and hence time scale in
the system [1]. The observation of the 1/f2 spectrum is
consistent with earlier claims [4], too.

III. SUMMARY

So far, we have explicitly calculated the eigenvalues of
the Abelian sandpile model with open boundary condi-
tions in any dimension. Thus we know that the total
number of distinct self-organized critical configurations
(or we may term it as the eventual phase-space volume of
the system under its own dynamics) increases like a
power law. However, due to the conservative nature of
the model, one of the eigenvalues will tend to zero in the
thermodynamic limit. This leads to the long-range corre-
lation effects of the system as reflected by the two-point
correlation function. Besides, we have discovered a sum
rule in the two-point correlation function and hence we
have concluded that the power spectra in avalanche size
for the Abelian sandpile model shall scale like 1/f2 for
all finite dimensions. Unlike all the previous arguments
[4], which are based on statistical arguments, ours use
only straightforward calculations for the two-point corre-
lation functions. In fact, the method we use in calculat-
ing both A and G is rather general. After suitable
modification, it can also be applied to various other ASM
models on different lattices.

Finally, we have compared the problem of self-
organized criticality with the problem of site percolation.
We have argued that the value of 1/ sets a lower bound
for p. in the corresponding site percolation model. In
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this way, we have offered a new way for calculating either
analytically or numerically the lower bounds of critical
coverage probabilities in various site percolation models.
Further discussions on this issue can be found elsewhere
[15].
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APPENDIX A

Proof of Theorem 1. Similar to Fact 2, the characteris-
tic polynomial f,(A) of S{ is given by

_ sin(n +1)x —p sinnx

; ) (AD
sinx

fa(A)
where A=a —2cosx and p =a —b >0. So the eigenval-
ues are just zeros of Eq. (A1).

Case (i). If p=<1, then consider x€&€[kw/n,
(k +1)7/n] for some k =0,1,...,n —1. We may further
assume that g(x)=p sinanx is non-negative in this inter-
val; otherwise, the argument is just similar. By direct
checking, it is clear that /4 (x)=sin(n + 1)x attains a max-
imum value of 1 ( 2 p) in this interval. Also, we can find
x in this interval such that A (x) becomes negative. By
continuity of both g (x) and 4 (x), they must meet at least
once in this interval. Moreover, it is not too difficult to
see that they meet twice in the intervals where kK =0 and
n —1, respectively. So from Eq. (A1) and the fact that
there are totally n eigenvalues, each interval, except for
k =0 and n — 1, contains exactly one zero for the equa-
tion g(x)=h(x) and hence our assertion is obviously
satisfied.

Case (ii). If p>1, then sin(rn +1)x =psinnx can be
rewritten as sinx =(p —cosx)tannx, with p —cosx being
always positive. Thus the roots of this equation in the in-
terval (0,77) must lie in the region where tannx = 0. That
is, x €[k /n,(k +0.5)7/n] for some k =0,1,...,n —1.
Moreover, due to the continuity of tannx and the fact
that it runs from O to o in this region, there exists at
least one root in each of the close intervals. From Eq.
(A1) and the fact that f, has exactly n zeros again, our
assertion is also true.

APPENDIX B

Calculation of G. We consider the case where m =n.
Following the idea of Theorem 2, together with Fact 2,
we know that, if D; ; ., ; denotes the matrix

8,18, ,(4—2cos[im/(n+1)]—2cos[jm/(n +1)]),

we can also construct the unitary matrix V such that
VDV ~ ! is block tridiagonalized and hence



2400 H. F. CHAU AND K. S. CHENG 47

jam . law
in——

26. n sin S
(VﬁlD_lv),‘ k1T Lk n+1 ot (Bl)
R 4—2cos—T— —2 cos—2T
n—+1 n+1

If we interchange i with j and k with I, the matrix VDV ™! will be block-diagonalized, with each block being tridiago-
nal. So by applying the same trick again, it is not difficult to see that the same V as before can diagonalize this block-
diagonal matrix. So we have

Gijii= 3 Vijtap(VD'V,0 Vearr - (B2)
a,b,c,d

By direct calculation, Eq. (9) is proved. Following the same argument, Eq. (9) can also be generalized to higher dimen-
sions.
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